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Abstract
Railways are a key infrastructure for any modern country. The reliability and resilience
of this peculiar transportation system may be challenged by different shocks such as
disruptions, strikes and adverse weather conditions. These events compromise the
correct functioning of the system and trigger the spreading of delays into the railway
network on a daily basis. Despite their importance, a general theoretical
understanding of the underlying causes of these disruptions is still lacking. In this
work, we analyse the Italian and German railway networks by leveraging on the train
schedules and actual delay data retrieved during the year 2015. We use these data to
infer simple statistical laws ruling the emergence of localized delays in different areas
of the network and we model the spreading of these delays throughout the network
by exploiting a framework inspired by epidemic spreading models. Our model offers
a fast and easy tool for the preliminary assessment of the effectiveness of traffic
handling policies, and of the railway network criticalities.
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1 Introduction
Transportation networks are a critical infrastructure with an enormous impact on local,
national, and international economies [1, 2]. At the micro-level, the commuting time im-
pacts the economy and the shape of cities [3], directly influencing our life style and choices
[4]. At the macro-level the travel time regulates trade and stimulates economic activities
[5]. Railroads, when correctly developed, foster interregional trades within the country,
and increase income levels within the city boundaries [6]. Whether we are traveling in
crowded coaches of the commuters rail during rush hours or in the long-medium high
speed train trips, the reliability of the transportation system is a key factor in determining
travel behavior [7]. The travel time unreliability in rail service can have substantial con-
sequences for its users [8] and the growth of cities [9]. Delays are one of the causes that
corrupt the travel time reliability of the transportation systems. To address delay propaga-
tion, traditional approaches apply either stochastic models [10] or use propagation algo-
rithms on a timed event graph representation of a scheduled railway system [11]. Complex
equations describing delay were obtained and solved by means of iterative refinement al-
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gorithms to predict positive delays in urban trains [12], while traffic control models were
proposed to manage the safety of timetables after perturbations occur [13].

The development of models addressing the dynamics of trains over railway networks are
usually focused either on delimited aspects, e.g., single lane dynamics [14] or the issuing of
schedule [15, 16], or are comprehensively including a wide variety of different microscopic
ingredients that can be hardly validated by real data [17, 18]. In the last years a new per-
spective bloomed to provide a different understanding of delay dynamics through the lens
of Complex Systems. Railway networks have largely been studied and exhibit small-world
scaling properties [19], their topology have geo-spatial restriction [20] and structural re-
dundancy [21]. On the other end, a railway delay dynamics framework within a complex
systems approach is still lacking. Our aim is to develop a model capable of reproducing the
actual delay structure and the emergence of congested areas, by exploiting some essential
ingredients without relying on the detailed knowledge of the microscopic mechanisms un-
derlying delay generation. A similar approach has already been successfully applied in the
context of the Air Transport System of USA and Europe [22, 23], where interaction models
were used to characterize and forecast the spreading of delays among flights. These mod-
elling schemes are driven by the necessity of simple and novel frameworks to study trans-
portation systems, allowing fast scenario simulations for schedule testing, which could
be easily applied to resilience studies that are nowadays performed independently of the
dynamics taking place over the network [21].

Following a similar approach, we develop a new data driven model of delay propagation
among trains diffusing over a railway network. We start by inferring universal laws govern-
ing the emergence of delays over the railway network as a consequence of the occurrence
of adverse conditions that are not depending on the (possible) interactions between trains.
Hence, inspired by models for epidemic spreading [24], we introduce the Delay Propaga-
tion Model as a novel framework to asses and test how such emerging delays spawn and
spread over the network. We name the first kind of delays as “exogenous delays”, while the
second ones stemming from the interaction between trains as “endogenous delays”. While
the occurrence of exogenous delays can be detected and analysed from our data, the en-
dogenous delays, on the contrary, since the (supposed) direct interaction between trains
cannot be inferred from the dataset we collected, will be modeled with a one parameter
interaction. The effects and consistency of such endogenous delay modelling scheme will
be checked a posteriori by means of numerical simulations. Our model is close to an SIS
model of epidemic spreading [24], since trains can either get infected by delay, recover
from it and then get infected again. We show that this model is capable of reproducing
the empirical distribution of delays measured in the data as well as the emergence of large
congested areas. Moreover, we show that the removal of the delay propagation mechanism
prevents the modeled system from generating large disruptions, hence strongly suggesting
the existence of this kind of interaction in the real system. Finally, we propose an applica-
tion of our model in studying a scenario where the propagation of a localized delay leads
to the emergence of a vast non-functioning area in the Italian Railway Network.

The paper is structured as follows: in the first section we describe the dataset and some
empirical findings that inspired the assumptions used in the development of the model; in
the second section we discuss the model in detail and will show its capability of reproduc-
ing empirical findings such as the distribution of delays and the size of congested areas;
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we will also demonstrate the usefulness of the model as a scenario simulation tool; in the
last section we will summarize our findings and discuss possible future developments.

2 Methods
2.1 Data
In order to extract relevant patterns related with the emergence of train delays, we col-
lected and analysed data about the daily operations of the Italian and German Railway
Systems during the year 2015. Such data were collected in the first case through the Vi-
aggiaTreno website [25] and for the second one through the OpenDataCity website [26].
The information we acquired allowed for a complete reconstruction of the schedules of
the trains, the structure of the Railway Network and the delays that affected the trains
during their movements. For more information about the data collection please refer to
Additional files 1–3. The choice of the Italian and German Systems as subjects for our
studies lies in their similarities in structure and management. In fact, their networks have
remarkable and comparable sizes (41,315 and 16,723 km, respectively) and densities (8.22
and 12.46 km2 per km of tracks, respectively [27]). Moreover, these two countries share
also a crucial characteristic: in both railway systems traffic is handled mainly by a single
national company. In other countries with similar networks, like in the United Kingdom,
the railway network is managed by different companies resulting in a more complex sys-
tem where trains are additionally subject to the commercial policies of different operators.
Figure 1 shows a set of topological analyses of the two railway networks, together with a
preliminary analysis of the traffic load and delays in the systems. Following existing litera-
ture, we refer to a railway network as the network whose nodes represent stations that are
connected by a link whenever there is a train connecting them with two consecutive stops
in its schedule. The network is directed since it is possible that a connection between two
stations is travelled just in one direction. In this paper we refer to the nodes in a railway
network either as “nodes” or as “stations”. Moreover, the action performed by a train trav-
elling from station A to station B will be referred as “travelling over the link” connecting A
and B. In both networks the distribution of the degree k is peaked on k = 4 and for larger
degrees has exponential-like decrease [19, 28] proportional to e–k/k0 with k0 � 4.5 ± 0.1.
This finding is in agreement with other geographical networks [29]. The network assor-
tativity (Fig. 1A) [30] is for Italy and Germany, 0.18 and 0.24 respectively. This indicates
that while there is a slight preference for stations with the same degree to be connected
each other, yet the various degrees are mostly mixing, i.e., smaller and larger stations are
typically connected. The local clustering coefficient (Fig. 1D), defined as the fraction of
pairs of neighbours of a given station that are connected over all pairs of neighbours of
that station [31], can be used to infer the redundancy of the network. When a disruption
occurs, a station with an high clustering coefficient can be bypassed easily. Complemen-
tarily, betweenness centrality (Fig. 1E) is a measure of the centrality of a node in a network
based on the number of shortest paths that pass through it [31]. This measure highlights
how strategic a given station is at a global level.

The clustering and the betweenness outline the typical small word topology of trans-
portation networks [19]. German stations show a distribution between 10 and 100 trains
per day, narrower that the train distribution of the Italian stations, which instead dis-
play a broader distribution, suggesting a more heterogeneous handling of train traffic load
(Fig. 1F). Finally, Fig. 1G shows the histogram of the average delays of trains aggregated by
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stations for the two nations. Both distributions show a peak and heavy tail, whereas com-
pared to the German distribution, the Italian distribution is clearly shifted towards higher
delays. The topological similarities between the two networks suggest that the differences
in delays and traffic load might be the result of differences in the trains dynamics.

2.2 Train interaction on railways networks
To focus on the analysis of delays, their outbreak and evolution, we choose trains instead
of stations as our reference systems. The intermediate delays for a train i travelling from
station A to station B on the link e is defined as �it(e), The departure delays at the initial
station have been subtracted to analyse only the delays that have been generated during
the travel. Hence �it(e) can be negative whenever the train is in advance, resulting in the
train waiting at the station for the correct time of departure. Figure 2A shows the delay
distributions for both national systems, considering the delays at intermediate stations
along the path of a train, or just at the final station. We observe similar shapes of these dis-
tributions, with the Italian one exhibiting broader tails than the German. More than 10%

of the train stops are on-time. The distributions of both countries exhibit an asymmetric
pattern: the right tail (labeled Delay) shows a power-law like behaviour compatible with
a q-exponential distribution [32], while the left tail (labelled Advance) has an exponen-
tial steeper slope. We expect this distribution to be the result of the interplay between the
occurrence of adverse conditions and the interaction between trains, influencing their dy-
namics. Despite the fact that the microscopic details in our data do not allow for a precise
investigation of possible interactions between trains, we can highlight how the possibility
of interaction might affect the delays in railway networks. Hence, we study the relation be-
tween the first order co-activity of a link, i.e., the probability that at a certain time t (with
time steps of 30 minutes) a link which is active has at least one active neighbouring link,
to the average delay of the link itself. In Fig. 2B we show this quantity as a function of the
average delay for both the Italian and German cases. We notice a slight increase in aver-
age delay as the co-activity increases, confirmed also by the Spearman’s coefficients, 0.43
for Italy and 0.56 for Germany. Hence, the possibility of interaction between trains in a
certain part of the railway network seems to increase the delay localized in that area. Note

Figure 2 Delays and train interactions. (A) Distributions of the delay at the final and at the intermediate
stations trains in both Italian and German datasets. Departure delays at the initial station has been subtracted,
hence these delays originated during the travel. As a guide for the eye, a power-law has been added in the
positive delay area and an exponential in the advance area (negative delay). (B) Average delay of a link as a
function of the link k-order co-activities, with Spearman’s correlation coefficients showing the existence of a
relation between the co-activity and the average delay. The curves have been obtained by binning the data
on the x-axis at steps of 0.2 and reporting the average and the standard error. (C) Cross-Correlations C(dt) from
equation (1) as a function of dt for the average delay time series of pairs of nearby links in the railway networks
in the “Forward” and “Backward” configurations (shown in Fig. 3), and in the “Connection” configuration
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that we have defined the first order co-activity between neighbouring links, i.e. links that
have at least one node in common. We can define a k-order co-activity considering links
connecting at least two nodes that are less than (k – 1) links apart following the shortest-
path connecting them. We report the same measurements for k = 2 and k = 3 showing that
in general, the same relation with the average delay is confirmed even though the curves
are shifted towards lower values. This indicates that considering the interaction between
non-neighbouring links is relevant but might include less important contributions to the
delay. Hence, in the following we will limit our analysis to the first order neighbour links
and assume that interactions between trains are possible only when they are in nearby
links. Figure 2B supports the thesis of a propagation effect but an important feature has
yet to be determined. In fact the direction of the propagation still has to be determined.

2.3 Defining possible interactions
Let us consider a train i travelling between two stations A and B (i.e., on the link e = AB,
see Fig. 3) with some delay. We can argue that the propagation of this delay to other trains
can occur only if they travel on the neighbour links of e. Due to the fact that the railway
networks are directed, there are four different configurations of the links with respect to e:

(i) links entering A, i.e. trains moving towards the last station crossed by i;
(ii) links entering B, i.e. trains travelling towards the same station i is currently

travelling to;
(iii) links exiting from A, i.e. trains departed from the last station crossed by i;
(iv) links exiting from B, i.e. trains leaving the station i is currently travelling to.

We can exclude the last two case: (iii) given that all the trains in such configuration will
have no interaction with i; (iv) is less important because it describes scheduled connec-
tions. In the latter case, schedules foresee extra-time between the two trains exactly to
avoid delay propagation. We checked whether the propagation occurs in the case (i) of
backward propagation, in the case (ii) of forward propagation, whose definitions are de-
picted in the graphic Fig. 3. To discriminate which mechanism is at play, we measured
the average delay time sequence �t(e) of each link e of the network, defined as the av-
erage delay of all the trains that are currently travelling on e. Successively we measured
the cross-correlation functions of the average delay time series of all the pairs of links,
i.e., CCe,e′ (dt) =

∑
t �te(t)�te′ (t + dt)/σeσe′ being e and e′ generic neighbours links of the

network, σe and σe′ the standard deviation of the whole time series �te(t) and �te′ (t).
Then we averaged, aggregating the pairs of neighbours links according to their configura-
tion (forward, backward, etc). In this way, for each of the four configuration, we obtained
an average cross-correlation function. In the backward propagation configuration can be
defined:

CB(dt) =
〈
CCe,e′ (dt)

〉
(e,e′)∈B (1)

Figure 3 Arrows represent main delay propagation
mechanisms. Backward propagation: the (green)
train travelling from station A to station B has got a
delay and propagates it to following (blue) trains
travelling towards station A; Forward propagation:
the train on AB propagates its delay to (red) trains
that are travelling from the station C toward B
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withB as the ensemble of links pairs. For both networks the Backward mechanism is dom-
inating while the Forward can be neglected (Fig. 2D). The high-speed layer of the railway
network shows the similar backward mechanism, while there is no cross-correlations be-
tween the delays of high-speed vs. low-speed (see Additional file 1 Fig. S1) acting as two
independent layers.

2.4 Exogenous generation of delay
We define two kinds of delays: endogenous and exogenous. By “endogenous” we mean that
its origin is inside the railway system dynamics, i.e. it has been caused by another train.
Conversely, by “exogenous” we mean that its cause is of a different nature: strikes, mal-
functioning, bad weather or anything else which is not the result of the interaction with
another train. We measure directly this types of delay in our datasets. Let us consider a
train i travelling from a station A to a station B on the link e and further to a station C on
the link e′. It will travel first on the link e and then on the link e′. The delay are indicate
respectively as �ti(e) and �ti(e′). If there is a increase in the delay �ti(e′) > �ti(e) it might
be “endogenous” or “exogenous”. The exogenous delay is defined as δt = �ti(e′) – �ti(e),
the variation of the train delay traveling on links whose neighbouring links were empty or
hosted trains perfectly on time. It is worth noticing that δt might also be negative, for ex-
ample, if the train managed to make up for lateness. Results are reported in Fig. 4, showing
the distribution of positive exogenous delays as well as negative ones for the Italian and
German cases. In order to model these distributions, we adopted the same approach used
in [32] for departure delays. We fitted both the positive and negative parts of the distribu-
tions with q-exponential functions, where the parameter q modulates from an exponential
distribution q → 1 to a fat-tailed distribution for q ∈ (1, 2] [33]:

eq,b(δt) ∝ (
1 + b(q – 1)δt

)1/(1–q) with q ∈ [1, 2], b > 0. (2)

It has been shown that such distribution can be obtained starting from a poissonian pro-
cess p(δt|α) = αe–αt , where α is a random variable extracted from of n independent gaus-
sian random variables Xi with 〈Xi〉 = 0 and 〈X2

i 〉 	= 0, so that α =
∑n

i=1 X2
i [32]. In this way

it can be proven that n = 2/(q – 1) – 2, i.e. the parameter q, is related to the number of
random variables composing α. The parameter b is proportional to the average value of α,

Figure 4 Exogenous delays: positive exogenous delays (continuous lines) and negative delays (dashed lines)
for the Italian (A) and German (B) railway networks. The black dashed lines are obtained by fitting the
q-exponential distribution of Eq. (2) to the data. The best fitting parameters are shown in the legend
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Figure 5 Best fits of the q-distribution parameters for the exogenous positive and negative delay
distributions as function of the length of the links d. Panels (A) and (B) show the parameters for the positive
and negative exogenous delays in the Italian railway network, while panels (C) and (D) show the same results
for the German case. The function expressing b was sought of the form b = b1(d/d0)–a , while the parameter q
of the constant form q = c

so that large values of b at fixed q result in a distribution biased toward shorter delays. The
parameter q quantifies how much equation (2) deviates from being exponential, which is
the case q = 1. This model has already been applied to the departure delays in the UK rail-
way system, showing that the value of q where so that 4 ≤ n ≤ 11 and thus estimating the
number of independent occurrences contributing to the delay. For the positive exogenous
delays in the Italian and German case respectively, we found q = 1.23 and q = 1.32, corre-
sponding to n � 7 and n � 4. The negative part of the distribution is exponential-like for
the Italian railway network and broader for the German, this outlines the delay recovery
strategies in the second case. To characterize the effect of the spatial distance on the delay
distribution, we subdivided the links e of the railway networks in classes according to the
geodesic distance d(e). Figure 5 shows the behavior of the q and b parameters of the q-
exponential fit as functions of d(e). The parameter q remains constant in every case, while
on the other hand the parameter b decreases as b ∼ d–a. Figures S6–S9 of Additional file 1
show the different best fit for equation (2) as d(e) varies. This result suggest that while
the causes of the delay remain the same, the distribution of disturbances gets closer to a
power-law as the length of the links increases, this outlines a relation between link length
and delay. Finally, we can assume that the occurrence of positive or negative exogenous
delays on links, P(δt > 0|d(e)) and P(δt < 0|d(e)), are not roughly constant with d(e) and
hence are not depending on the length of the links (Fig. S10 of Additional file 1).

2.5 Generation of delay at departure
Departure delays, i.e. the delay a train acquires right before leaving the first station on its
route, cannot be considered in principle completely exogenous. In other words, due to the
fact that different trains in our datasets can actually be the same physical train (e.g., the
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Figure 6 Best fits of the q-distribution parameters of the departure delay distribution as a function of the
out-degree of the nodes kout . Panels (A) and (B) show the parameters for the positive and negative departure
delays in the Italian railway network, while panel (C) the positive departure delay distribution for the German
case. No negative departure delays were reported in the German dataset. The function expressing b was
sought of the form b = b0e–kout/k0 , while the parameter q of the constant form q = c

same convoy travelling back and forth along the same path on the railway network – this is
denoted as “rotation” –), the delay at departure might suffer from the influence of the traf-
fic. However, railway administrators envisage suitable time buffers at the endpoints of the
paths of each train so that it is reasonable to assume, at least as crude approximation, that
departure delay is exogenous in character. It has already been shown that this kind of delay
can be described by a q-exponential distribution in [32]. However, the dependence on the
parameters of the obtained distributions with respect to the topological properties of the
network has not been investigated yet. Following the same spirit of the previous paragraph
for the exogenous delay on links, we divide the nodes in the network (the train stations),
with respect to their out-degree. The out-degree kout represents roughly the number of
different railway lines starting from a certain stations and hence can be considered as a
proxy for the complexity of the station itself. Once the nodes of the networks have been
divided according to kout, we fitted these distributions using a q-exponential following the
procedure defined in [32] (see Fig. S12, Fig. S13 and Fig. S14 of Additional file 1).

Figure 6 shows the behaviour of the parameters q and b of the q-exponential distribution
as functions of kout for the positive and negative departure delays in the two considered
railway networks. Negative departure delays were never reported in the German dataset
and hence we assume they are not present. Despite the fact that better proxies for station
complexity than kout might exist (weighting each link with the actual number of railway
lines on it is a valuable alternative example), it is possible to see that we have again a con-
stant parameter q indicating that the sources of delays can be assumed to be the same
independently from the station, while on the other hand the parameter b decreases ex-
ponentially with kout. The small value of R2 in the case of Italy might reflect the above
mentioned possibility of having a non negligible endogenous contribution to the depar-
ture delays because of train rotations.

In Germany the departure delay can be considered constant and independent on the
size of the station. In Italy the P(δt > 0|kout) grows linearly with kout meaning that stations
with high degree are generating larger disruptions in the network.

3 Modelling a realistic rail transport system
The analyses proposed so far suggest the existence of two sources of delays: exogenous
delays spontaneously occurring due to external adverse conditions at departure and dur-
ing travel, depending on the topological properties of the Railway Network; endogenous
delays resulting from the interaction between trains. While in the first case we were able
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to characterize the statistical laws governing the emergence of delays, we cannot directly
investigate the mechanisms of interaction between trains. Following the ideas exploited to
model real world epidemics [34, 35] which have already been proven effective on air traffic
delay modeling [22], we will define a propagation process for delays i.e. we will suppose
that trains can spread their delays from one another according to some fixed probability
and in certain conditions. Such probability will be derived by comparing the results from
the simulations with the model and the empirical data.

3.1 The delay propagation model
We define the model scheme by leveraging the train-to-train propagation mechanism,
with the aim of reproducing the real dynamics of delay spreading across the railroad net-
work. The model starts reproducing the normal schedule of trains on a certain day. Train
schedules are organized so that each train has its own “time window” to travel over a cer-
tain link along its path. Each train departure is at a fixed time and at a certain station and
each intermediate station is going to be visited at a given time. However, our interest is
in the deviance from the expected schedule. If some disruptions occurs a train might go
out of the window of use for a certain link and overlap the window of another train for the
same link. In this case, the second train will be forced to wait for its path to be cleared.
Hence, the model adopts three different sources of delay as depicted in Fig. 7:

Departure delay This delay is assigned at the beginning of the path (originating station)
of each train and is considered exogenous and unrelated with the current traffic con-
ditions at the departing stations or in the nearby links. We assign to a train either a
positive or negative delay according to the empirically found law of the correspond-
ing probabilities p+

dep = P(δtdep > 0 |kout) and p–
dep = P(δtdep < 0 |kout) respectively (and

no delay with complementary probability 1 – p+
dep – p–

dep) (see Fig. S15 of Additional
file 1). Once the sign of the delay has been decided, we assign a positive or negative de-
lay value so that |δtdep| ∼ eq(kout),b(kout)(δt), i.e. distributed according to a q-exponential
distribution with the parameters q and b depending on kout and on the sign of the
delay itself as in Fig. 6.

Exogenous Link Delay This delay is assigned whenever a train starts travelling on a link
for the first time (Fig. 7 reports an exemplification of the model). Considering a train
i passing from the link AB to the link BC, we adopt the same modelling scheme as
in the departure delay case assigning to the train a positive delay with probability
p+

exo = P(δtexo > 0 |d(BC)), a negative one with probability p–
exo = P(δtexo < 0 |d(BC))

and no delay with 1 – p+
exo – p–

exo, where d(BC) is the geodesic length of the links BC
(see Fig. S10 of Additional file 1 for the corresponding law of probability). Having

Figure 7 A schematic explanation of the core
mechanism of the Delay Propagation Model. In this
picture, a train i departs from the station A and
acquires a departure delay from a distribution
depending on the out-degree of A in the railway
network. When the train i passes through station B,
its delay δti gets two contributes: (i) a stochastic
exogenous delay δtexo depending on the length of
the link d the train i is going to travel; (ii) a propagated delay δtj depending on the presence of a delayed train
j travelling on a nearby link. If there is such a train j with a positive delay δtj > 0, this delay is propagated to
train i with probability β , which is the only free parameter of the model
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decided the sign of the delay, we fix the parameter of a q-exponential distribution q
and b according to d(BC) (Fig. 5) and we extract the magnitude of the delay so that
|δtexo| ∼ eq(d(BC)),b(d(BC))(δt).

Delay Propagation We model the interaction between trains with a mechanism of prop-
agation of delay from other trains to train i. The investigations performed on the
datasets suggest that such interaction can occur only when nearby trains are in the
Backward propagation configuration of Fig. 3.

Following the picture of the model in Fig. 7, when the train i starts travelling on the
link BC leading to the C station is susceptible of propagation from the train j, which is
travelling from C towards D. Inspired by the SIS models of epidemic spreading [24],
in which agents can get infected and recover from the illness with a fixed probability,
we introduce the delay propagation parameter β ∈ [0, 1] describing the probability
that the delay of the train j propagates to i. We assume that the propagation occurs at
the time i starts travelling onto BC. When train i travels on BC from time t1 to time t2,
we check whether delayed trains are travelling on links in the Backward propagation
configuration with respect to BC in [t1, t2]. Thus, we randomly pick one of those
trains, say j, and with probability β its delay δtj is added to the delay of i.

The model simulates the theoretic schedule applying all these delay-generating mecha-
nisms. More in detail, we start the dynamics of each train i by adding a departure delay
δtdep according to the Departure delay mechanism. After the departure, each time the
train starts traveling over a link in its route, we update its delay according to the following
rule:

δti → δti + δtexo + δtj, (3)

where δtexo is sample following Exogenous Link Delay mechanism, so that the delay will be
positive with probability p+

exo and negative with p–
exo and the parameters of the sampling

distributions are depending on the length of the link as in Fig. 5. The term δtj the contri-
bution of the Delay Propagation which will different from 0 with probability β and just if
there is at least one delayed train in the right configuration. This mechanism for interme-
diate stations reproduces the general noise associated with external causes, but does not
account for long correlations such those present in case of large scale adverse conditions,
e.g., bad weather, or national strikes. Finally, when the train reaches its final destination
it is simply removed from the simulation. We used the described model to reproduce the
delay spreading dynamics starting from a theoretic timetable and local exogenous delays
distribution. Results of the simulation for both the Italian and German national railways
systems are reported in the next section.

4 Results
The model is based on the exogenous sources of delay that represent the spontaneous
emergence of disruptions due to the aggregation of a finite number of external causes
(trains malfunctions, accidents, bad weather, etc.). These sources are modelled according
to a universal probabilistic law, whose parameters are inferred from the data at our dis-
posal. The propagation parameter β modulates the mutual interaction between trains. For
simplicity, we chose this parameter to be uniform all over the network, which is a strong
assumption since the propagation might depend on the considered part of the railway
system.
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4.1 Reproducing the emergence of delays and congestion
In Additional files 1–3 we show that it is possible to estimate the best value for β by try-
ing to reproduce the average delay of each station. These values have been estimated as
β = 0.15 for Italy and β = 0.1 for Germany. In the top panels of Fig. 8A, we show that
with these choices for β the system is capable of reproducing the empirical distributions
of arrival delays. However, in order to disentangle the effect of the β parameter and the
two other sources of exogenous delay, we also report the same result for the case in which
β = 0 and β is larger than the optimal value. In the latter, we clearly see that there is an
increase in the number of extremely large delays. On the other hand, turning off the inter-
action by setting β = 0 completely removes delays larger than 2 hours. Hence according to
our model, the presence of exogenous delays by themselves would not be able to predict
the presence of large disruptions. Since β represents the probability of delay propagation
between two trains, these estimations give a quantitative account of the difference be-
tween the two countries. These results suggest that the Italian trains propagate each other
delay more often than German trains. The microscopic reasons of this difference could
be connected to different properties of the railway networks, to the peculiar geographical
structure of the territory, to different delay handling policies, etc., and it is out of the scope
of the present paper. As it happens in other transportation systems, we expect that dis-
ruptions occur clustered in certain areas of the network [22]. For this purpose we provide
a definition of “cluster of congested stations” and how to discriminate whether a station
is “congested”, i.e. when its functioning is inefficient because of the hoarding of delays.
For each station we can define a threshold between the “functioning” and the “congested”
status based on the value of incoming train delays. We calculated such threshold for each
station as the average value of the delays of all the trains arriving at the considered station
in the dataset. Considering a period of two months (March and April 2015), we examined
each station every 5 minutes during the day, checking whether the average delay of all the
trains moving towards that station during that lapse of time was above the average. We
consider the station as “congested”, while if the average delay is below that threshold we
consider it as “functioning”.

We identify, at each time step, the “clusters of congested stations” as the connected com-
ponents of the railway network left once we removed all the functioning stations from the
network. (i.e. the stations whose congestion might be correlated with one another because
of the propagation of delay).

In order to check whether our model is able to reproduce the emergence of these areas,
we focused on two measures: (i) the size of the clusters in terms of number of stations
and (ii) the relation between the size and the diameter of the clusters. This latter measure
is capable of giving insights about the topology of the congested clusters. Bottom pan-
els of Fig. 8A show real and simulated cumulative distributions of cluster sizes for both
countries. We find a strong accordance between model and reality when β is set to the
optimal value, pointing out how the model is also able to reproduce this aspect of delays
dynamics. Similarly to the arrival delay distribution, here β affects the tail of the distribu-
tion so that β = 0 (i.e. no propagation of endogenous delays) implies the absence of large
congested areas. We study the diameter of the cluster defined as the distance between the
farthest couple of nodes in the cluster. We compute the diameter both in the case where
just the topological distance between nodes is considered and the case where each link is
weighted with the geodesic distance between the stations it connects. To panels of Fig. 8B
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Figure 8 (A) Comparison between the empirical delay distribution (left) and the empirical cluster size
distribution (right), with the results coming from the simulations for the Italian (Red) and German (Blue)
Railway Networks. Different curves correspond to different parameters of β . The optimal β value is 0.15 for
Italy and 0.1 for Germany. The distribution shown in these panels are inverse cumulative distributions.
(B) Cluster Diameter as a function of the cluster size obtained with the empirical data and with the
simulations. Dotted lines represent the case in which clusters are path-shaped. Left part represents results
from data and simulation for the Italian system. Right part is for Germany. Upper panels show the diameter
computed without considering the geographical distance between the nodes (with the black lines showing
the behaviour in which clusters have a compact shape), lower panels take this distance into account. Results
in (A) and (B) have been obtained by simulating the full-day schedules of March and April 2015, both for the
Italian and German case. In this figure all the quantities that have not a specified unit of measurement are
adimensional
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shows the dependence of the cluster diameter computed with both distances on the clus-
ter size. In the cases where the diameter is computed by using the geodesic distance, the
dotted line represents the diameter of a cluster of size n, assuming that all the links of the
clusters are as long as the average link length of the network. Such pattern corresponds
to the case where all the clusters are randomly sampled from the whole network without
any constraint. From the lower panels of Fig. 8B we can see that while clusters do have
a path-like structure, they cannot be considered randomly distributed over the networks.
Instead, they seem to be deployed in areas where the links are larger than the average links
length of the corresponding network, resulting in the same dependence of the dotted lines
but shifted upwards. The fact that the geographical diameter of large clusters grows up to
hundreds of kilometers indicates that disturbances can propagate between far away parts
of the network.

The topological measure in the top panels of Fig. 8B exhibits strong deviations from the
path-like behaviour especially when large clusters are involved. The mismatch between the
two ways of characterizing clusters could be due to the fact that the geographical distance
may hide, by stretching them, non path-like structures that are actually present in the de-
lay propagation patterns. The appearance of these clusters, and their features, are typical
outcomes of a non-trivial complex dynamics arising from train interactions. For this rea-
son it is a remarkable result that, as can be neatly be seen in Fig. 8, the model proposed,
despite its simplicity, captures this behaviour correctly. The relations between cluster size
and cluster diameter is show very good agreements with the empirical measures for both
nations and, perhaps more importantly, for both clusters diameter definition: the topolog-
ical and the spatial one. This clear adherence with reality of the results from a model with
only one parameter trained on a so small training set (only one week) is a strong proof
of the fact that the model hypothesis are very likely to be correct. Our model is capable
of reproducing some global patterns of the delay dynamics in railway systems. However,
some discrepancies at a more microscopic level can be observed. In particular our model
fails to correctly describe the behaviour of stations with low traffic. For these stations, the
hypothesis of a constant in time and homogeneous coupling parameter β may not be well
justified. We refer to Sect. 5 of Additional file 1 for a thorough discussion of this point.

4.2 Scenario simulation: prediction of the effects of a strong localized
disturbance

According to our model, the emergence of large clusters of congested stations is due to
the propagation of delay between trains. The source of this delay is however exogenous, in
the sense that comes from some adverse conditions which are external with respect to the
interaction of the trains. In order to investigate how the emergence of a real large cluster is
linked to exogenous effects, we study the case of the cluster emerged in the eastern part of
the Italian Railway Network on the 28th of February 2015. As can be seen in the Additional
files 1–3 video or on the on-line visualization,a a large congestion starts to emerge in the
early afternoon around 12am and propagates to a large part of the network until night. We
empirically identified the interested part of the network as the shortest-path connecting
the station of “NAPOLI CENTRALE” to the station of “ROMA TERMINI”, indicated in
Fig. 9A. The shortest-path has been computed weighting each link with the geographical
distance between the stations it connects. Figure 9B shows the fraction of stations in this
path that are congested in different times of the day, clearly indicating that such fraction
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Figure 9 (A) Representation of the “NAPOLI CENTRALE–ROMA TERMINI” route. The highlighted blue link is
the “NAPOLI CENTRALE–AVERSA” one, i.e. the spark of the perturbation. (B) Fraction of congested stations in
the “NAPOLI CENTRALE–ROMA TERMINI” route at different times of the day. The solid black line represents the
empirical measure performed on the dataset, the red area represents the results of the simulations between
the 5th and 95th percentile of all the realizations. The dashed red line is the average fraction of congested
stations obtained by averaging over the realizations. The vertical line represents the beginning of the
perturbation on the “NAPOLI CENTRALE–AVERSA” link

starts growing until a peak is reached in the afternoon. We have been able to identify
the beginning of this adverse occurrence as a disruption on the “NAPOLI CENTRALE–
AVERSA” link (highlighted in Fig. 9A) in the first part of the afternoon from 11 am to
14 pm, resulting in a large delay acquired by the trains travelling on that links. We argued
that this disruption was the spark that lightened the emergence of the congested cluster.

In order to check this hypothesis, we ran a simulation in which a large delay of 100
minutes is assigned with probability 1 to each of the trains crossing the “NAPOLI
CENTRALE–AVERSA” link in that period of time. Due to the non-deterministic nature
of the model, we performed the simulation of 200 different realizations in order to have a
set of scenarios to be compared with the real data. This comparison is shown in Fig. 9B.
We can see that with this simple modification and not considering other possible corre-
lations between the occurrences of external adverse conditions in nearby links, we are
able to reproduce a pattern which is qualitatively similar to the one observed in the data,
clearly pointing out that the “NAPOLI CENTRALE–AVERSA” link played a major role in
the congestion of the network. Moreover, our scenarios indicates the probability of hav-
ing a minor congestion in the line also in the early morning, probably due to usual minor
disruption occurring on other links. The proposed scenario simulation could be easily
extended to less localized adverse occurrences, which might comprehend spatially cor-
related disruptions due to natural events or strikes. Moreover, the same approach could
be used to study more dramatic effect of node, link removal or the positive effects due to
the introduction of more resilient and optimized schedules. In this cases, it is sufficient
to use the same structure of the model and modify the input schedule and/or the Railway
Network itself.

5 Conclusions
Railways and the railway transport systems have been historically of utmost importance
for the development of modern countries. Nowadays their importance is on the rise again
due to their relevance in the reduction of CO2 emissions and their competitiveness in
short and middle range movements, so that huge investment have been made in the Euro-
pean Union to improve their efficiency. However, the emergence of large disruptions and
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the intrinsic inefficiencies seem to be endemic in this kind of transportation. The under-
standing of the universal features governing the dynamics of the system from a theoretical
point of view could give an important contribution to the solution of such problems. The
development of a universal model explaining the emergence of delays in Railway Network
would allow for a quantification of the causes behind the occurrence of large disruptions
and for a more direct link between the effects that localized interventions might have
on the global system. In this work, we developed a novel model of delay emergence and
propagation between trains moving on Railway Networks, partly based on empirical laws
inferred from the data governing the accidental emergence of delays from the influence
of adverse occurrences. Remarkably, the statistical models used for the description of this
“exogenous delays” showed how these adverse occurrences are the result of the same fi-
nite number of causes (e.g., bad weather conditions and malfunctions) independently from
the topology, as opposed to the scale of these disruptions, which are largely influenced by
the part of the network the trains are travelling on. We find, in fact, that both the com-
plexity of a station as measured by the number of different routes originating from it and
the length of a route, are connected to the magnitude of the microscopic delays compos-
ing the overall delay by simple statistical laws with two parameters, whose value is the
same all over the network and can be inferred and fixed by data. This kind of universal-
ity is somehow surprising and opens the possibility of easily simulating the behaviour of
any railway system once the complete schedules and the network structure are known.
These emergent delays can then spread from one train to another by means of a delay
propagation probability β , which is in fact the only free parameter of our model. Despite
the high level of abstraction used in our approach, our model is capable of reproducing
the empirical patterns found in data when the delay-spreading probability β is fine tuned
to an optimal value. The model reproduces correctly the final delay distribution and the
distribution of the sizes of congested areas. Moreover, the model grasps the topological
properties of such congested areas, which appears to be spreading in some cases for many
kilometres through the network. According to our model, the emergence of large disrup-
tions is the result of the interplay between the occurrence of localized exogenous delays
and the propagation of such delays between trains. In other words, turning off the delay
propagation mechanism prevents the system from generating extremely large delays and
congested areas, pointing out that interactions are the driving force behind the emergence
of major spontaneous adverse occurrences. The modelling scheme seems quite promis-
ing so far, but it still suffers from some major assumptions that might limit its predictive
power. In fact, the interactions between trains could occur in longer ranges and not just
between neighboring links and the propagation probability could not be uniform all over
the Railway Network but instead depending on specific operational conditions. Moreover,
the modelization of exogenous delays could be refined by taking into account more static
topological feature of the Railway Networks or by introducing dynamical variations due to
different traffic conditions. Another interesting possibility would be to increase the num-
ber of Railway Systems under study (e.g., the French SNFC sharing similar characteristics
with respect to the Italian and German systems whose data is publicly available [36]), in
order to understand the reasons behind the quantitative differences observed, e.g. larger
delays in the Italian case. In the final part of the paper, we show how the model can be ap-
plied to study the capability of functioning of the system after a localized large disruption
occurring in a single node of the network. This approach can be easily extended to more
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complex case studies of distributed disruptions, the occurrence of strikes, the removal of
trains or parts of the network, also including the possibility to introduce delay manage-
ment strategies to increase the resilience of the system. The model is also useful in order
to have a fast test of changes in the overall schedule of trains so to have a more precise
assessment of their global effects. Finally, despite its simplicity the model is open an in-
crease of complexity that might lead to a better adherence to the empirical findings such
as long-range interactions between trains and a more detailed model of exogenous delays
including correlations between nearby link and the dependence on traffic conditions.

Additional material

Additional file 1: Supplementary information: Complex delay dynamics on railway networks from universal laws to
realistic modelling (PDF 5.2 MB)
Additional file 2: Supplementary interactive simulation files (ZIP 78.5 MB)
Additional file 3: Supplementary data (ZIP 480 kB)
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