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We characterize the statistical law according to which Italian primary school-size distributes. We find that
the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large
number of very small schools. The upper tail of the school-size distribution decreases exponentially and the
growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms
and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution
features a bimodal shape suggesting some source of heterogeneity in the school organization that we
uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster
methodology and a new spatial interaction approach among schools which outline the variety of policies
implemented in Italy. Different regional policies are also discussed shedding lights on the relation between
policy and geographical features.

T
here is a growing literature that nowadays sheds light on complexity features of social systems. Notable
examples are firms and cities1–4, but many others have been proposed5,6. These systems are perpetually out of
balance, where anything can happen within well-defined statistical laws7,8. Italian schools system seems to

not escape from the same characterization and destiny. Despite several attempts of the Italian Ministry of
education to reduce the class-size to comply with requirements stated by law9–11, no improvements have been
made and still heterogeneity naturally keeps featuring the size distribution of the Italian primary schools.

In this paper we characterize the statistical law according to which the size of the Italian primary schools
distributes. Using a database provided by the Italian Ministry of education in 2010 we show that the Italian
primary school-size approximately distributes (in terms of students) as a log-normal distribution, with a fat lower
tail that collects a large number of very small schools. Similarly to the firm-size12,13, we also find the upper tail to
decrease exponentially. Moreover, the distribution of the school growth rates are distributed with a Laplassian
probability density function (PDF). These distributions are consistent with the Bose-Einstein preferential attach-
ment process. These results are found both at a provincial level and aggregate up to a national level, i.e. they are
universal and do not depend on the geographic area.

The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school
organization. The evidence of the bimodality underlies the interplay between different processes that define
thresholds and boundaries that are very peculiar for the Italian primary school-size distribution. The question
that we attempt to address in this paper is whether such regularity might depend on the complex geographic
features of the country that in turn determines the way population (and in particular young people) distributes.
We address these questions by analyzing in depth the spatial distribution of the schools, with particular regard to
the areas where commuting is more effortful. We then proceed by investigating the complex link between schools
and comuni, the smallest administrative centers in Italy, addressed by the introduction of a new binning meth-
odology and a new spatial interaction analysis. Our conclusions indicate that the bimodality of the Italian primary
school-size distribution is very likely to be due to a mixture of two laws governing small schools in the countryside
and bigger ones in the cities, respectively.

Several examples of different regional schooling organizations are analyzed and discussed. We use GPS code
positions for schools in two very different Italian Regions: Abruzzo and Tuscany. We introduce a measure of the
average spatial interaction intensity between a school and the surrounding ones. We show that in regions like
Abruzzo, that are mainly countryside, a policy favoring small schools uniformly distributed across small comuni
has been implemented. Abruzzo small schools are generally located in low density populated zones, belonging to
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small comuni. They are also very likely to have another small school
as closest and the median distance between them is 8 km that is also
the distance between small comuni. In Tuscany, a flatter region with
a very densely populated zone along the metropolitan area composed
by Florence, Pisa and Livorno, we conversely find 1) a higher school
density; 2) a stronger interaction between small and big schools; 3) a
greater average proximity among schools. We address these stylized
facts by arguing that the Italian primary school organization is basic-
ally the result of a random process in the school choice made by the
parents. Primary education is not felt so much determinant to drive
housing choice, like in US, because of the absence of any territorial
constraint in school choice. Even if there is a certain mobility within a
comune toward the most appealing schools, primary students gen-
erally do not move across comuni to attend a school. As a result,
school density and school-size are prevalently driven by the popu-
lation density and then by the geographical features of the territory.
This generates a mixture in the schooling organization that turns into
a bimodal shape distribution.

Results
Empirical evidence. We analyze a database on the primary school-
size distribution in Italy that provides information on public and
private schools, locations, and the number of classes and students
enrolled. Data are collected, at the beginning of every academic year,
by the Italian Ministry of education to be used for official notices.
Our dataset covers N 5 17187 primary schools in 2010 of which
91.31% were public. Almost seven thousands are located in mountain
territories, (which represent the 40%) and 4101 are spread among
administrative centers (provincial head-towns).

In Italy primary education is compulsory for children aged from
six to ten. However, the parents are allowed to choose any school
which they prefer, not necessarily the school closest to their home14.
We define xi the size of the school i g [1, …, N] as the number of
students enrolled in each school. Fig. 1(a) shows the histogram of the
logarithm of the size of all primary schools in Italy. The red solid
curve is the log-normal fit to the data
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using the estimated parameters m̂~4:77 m̂=ln 10ð Þ~2:07ð Þ, the mean
of the ln x of the number of students per school, and its standard
deviation, ŝ~0:85 ŝ=ln 10ð Þ~0:37ð Þ. On a non-logarithmic scale,
exp m̂ð Þ~118 and exp ŝð Þ~2:34 are called the location parameter
and the scale parameter, respectively15. The histogram in Fig. 1(a)
suggests that log-normal fits data quite well. However, even a quick
glance reveals that there are too many schools with a small dimension
and much less mass in the upper tail with respect to the fit, suggesting
that the number of students of the largest schools is smaller than
would be the case for a true log-normal. In other words, similarly
with firms-size distribution16, tails seem to distribute differently from
the log-normal distribution. Also Fig. 1(a) reveals a bimodal shape of
the school-size distribution that we will extensively investigate below.

These findings can be detected in a more powerful way by plotting
the histogram in a double logarithmic scale, comparing the tails of
the log-normal distribution with those of the empirical one. We do
this in Fig. 1(b) where y-axes represents the logarithm of the number
of schools in the bins whereas in the x-axes the logarithm of the
number of students stands. The empirical distribution differs signifi-
cantly from the theoretical distribution which is a perfect parabola
(the red curve), both in the tails and in the central bimodal part. A
functional form of the right tail of the empirical distribution is
revealed in the inset of Fig. 1(b) where we plot the cumulative dis-
tribution P(X . x) of school sizes in semi-logarithmic scale. The
straight line fit suggests that the right tail decreases exponentially

P(X . x) 5 exp(2xa) with a characteristics size a~
1

120
. This in

turn means that there are approximately 120 students per school and
also that the distribution of large schools declines exponentially. The
exponential decay of the right tail of size distribution is consistent
with Bose-Einstein preferential attachment process and is observed
in the distribution of sizes of universities and firms.

Next we investigate the growth rates of elementary schools. Since
temporal data are not currently available, we look at the single aca-
demic year, the 2010, and define the growth rate gi as follows:

gi:
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where xj
i stands for the number of students attending the j-th grade in

school i, with j g [1, 5]; li:x1
i
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i is the fraction of students

that have been enrolled in the first grade at six years old in school i,

whereas mi:x5
i

.X5

j~1
xj

i is the fraction of students that exit the

school after the 5-th grade. Fig. 2(a) shows the relation between
growth rate gi and school-size xi. The numbers of grades j provided
by each school i, named Ji, is defined by the color gradient bar on the
right side of the Fig. 2(a). Blue circles identify schools with Ji 5 1.
Such a group collects schools just established only providing the 1-st
grade, i.e. with li 5 1 and mi 5 0, or that are going to close providing
only the 5-th grade, i.e. with mi 5 1 and li 5 0. As soon as more
grades are provided (colors switching to the warm side of the bar)
schools tend to cluster around a null growth rate.

In Fig. 2(b) we investigate the growth/size relationship in depth.
We demonstrate the applicability of the Gibrat law that states that the
average growth rate is independent on the size17,18. We define the
average of the school size in each bin c as Æxiæc. The number of schools
in each bin nc is represented by the size of the circle and the average
number of grades ÆJiæc is depicted according to the color gradient on
the right side (the same of Fig. 2(a)). Independently from the size and
the number of grades provided, schools do not grow on average.
Nevertheless, we find more variability in smaller schools, apart from
schools with xi , 10, namely hospital-based schools mostly similar to
one another, and the standard deviation of the growth rate sg xih icð Þ is

found to be decreasing as xih i{b
c with school-size by a rate of b < .60

(sub Fig. 2(b) inset). This is consistent with what has been found for
other complex systems like firms or cities13,19–23.

In Fig. 2(c) we study the growth rate distribution, where the prob-
ability density function P(g 5 gi) of growth rate has been plotted. The
blue line represents the full sample (all the schools) distribution.
Black and red colors identify the full capacity schools (Ji 5 5) and
the schools with Ji , 5, respectively. Regardless of the number of
grades provided, the growth distribution underlines a Laplace PDF in
the central part of the sample24. The not-fully covered schools show a
three peak behavior, where the left peak represents schools which are
going to close, the central peak gathers schools that provide several
grades but still in equilibrium phase, and the right peak is made up by
the growing schools. Fig. 2(d) reports empirical tests for the tails of
the PDF of the growth rate of the full sample (the upper one in blue,
and the lower one in black). The asymptotic behavior of g can be well
approximated by power laws with exponents f < 4 (the magenta
dashed line), bringing support to the hypothesis of a stable dynamics
of the process20. All these findings are consistent with the Bose-
Einstein process according to which the size distribution has an
exponential right tail, a tent-shaped distributed growth rate gi, with
a Laplace cap and power law tails, the average growth rate is inde-
pendent of the size, and the size-variance relationship is governed by
the power law behavior with exponent b < 0.5.

City size and school size. Fig. 1(a) features the coexistence of two
peaks, the first peak corresponding to log10 xi ; m1 5 1.7 and the
second one to log10 xi ; m2 5 2.3, divided by a splitting point in
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correspondence of log10 xi:�m<2:1. The school sizes corresponding
to these features are m1~10m1~50, m2~10m2~200, and
�m~10�m~128, with �m approximately equal to the average school
size. 39% of the Italian primary schools distribute on the right of �m,
and more than 60% distribute on the left side. We test the alternative
hypothesis of unimodality by looking at the probability that the
numbers of schools in the two central bins n1, n2 are not smaller
and the numbers of schools in the next three bins n3, n4, n5 are not
larger than a certain number n* provided that the standard deviation
of the number of schools in these bins due to small statistics is

ffiffiffiffiffi
n�
p

.

This probability is equal to p n�ð Þ~Pi erfc ni{n�j j
. ffiffiffiffiffiffiffi

2n�
p� �.

2

and it reaches maximum pmax < 4 3 10215 at n* 5 980.
Accordingly, we establish the bimodality with a very high
confidence. This is also consistent with the bimodality index that
we find to be equal to d 5 (m1 2 m2)/s 5 .45 25.

In this section we investigate the source of this heterogeneity that
we find to be related to geographical and political features of the
country and remarkably to the size of the comuni, the smallest
administrative centers in Italy (information on comuni are provided
by the Italian statistical institute, ISTAT), also here referred inter-
changeably as cities regardless of the size, pk. A particular treatment is
devoted to the nexus between the school-type (private versus public)
and the geographical features of the comuni in the supplementary
information, where we show that private schools are much less vari-
able in size than public schools and have a narrow unimodal distri-
bution peaked at approximately 100 students which contributes to
the left peak of the entire school size distribution (Figure S1).

We denote a comune with letter k 5 [1, …, K]. In 2010, K 5 8, 092
comuni have been counted in Italy, the 40% of which located in the
mountains. We defineM the set of mountain comuni and, accord-
ingly, we call school i a mountain school iff it resides in a comune
k[M (in the Supplementary we explain the laws according to which
Italian comuni are classified as mountains). Each city k has nk $ 0
schools (more than 15% of the cities have no schools) and population
pk, which distributes approximately as a log-normal PDF (see

Fig. 3(a)), except for the right tail that is distributed according to a
Zipf law, i.e. pk , r(pk)2j with slope j < 12,3,26–28. In Fig. 3(b) we find j
< .80, in Italy, that is exactly the slope of the power law pk , r(nk)2f

which links the population pk with the rank of this city in terms of
number of schools nk (blue circles in Fig. 3b), i.e. f 5 j < .80. This
means that the first city, Rome, has almost the double number of
schools than Milan, and triple of Naples, while Rome has almost the
double of inhabitants of Milan, and the triple of Naples. This
amounts to say that nk is a good proxy for the city-size.

We use the number of schools to assign comuni to different clus-
ters h g [1, …, H], according to

h~ V k [ 1, . . . ,K½ � : 2h{1
ƒnkv2h

� �
: ð3Þ

Accordingly, the first bin h 5 1 gathers all the comuni with only one
school; the second one collects all the comuni with nk 5 [2, 3], and so
on. Though we find the average population Æpæh to increase across
different city-clusters h, less comuni Kh lie in more populated clusters
(the magenta and black lines in Fig. 3(c)). Interestingly, we find the
interaction term KhÆpæh, the green line in Fig. 3(c), to distribute uni-
formly across different comuni-clusters, meaning that in small
comuni with nk 5 1 live the same population than in bigger ones
with much more schools.

Nevertheless, population is differently composed across city-clus-
ters and a smaller fraction of young people is found in smaller
comuni. To see that we also introduce a clusterization of comuni
according to population. Each comune is assigned to a cluster c g [1,
…, C] composed by all the comuni k with population pk ranging from
yc21 to yc, i.e.

c~ V k [ 1, . . . ,K½ � : yc{1
vpkƒyc� �

: ð4Þ

Setting the parameter y 5 2 yields C 5 23 clusters. Although the first
seven sets are empty because no comuni in Italy has less than 128
inhabitants, the first (non-empty) cluster, c 5 8, collects very small
comuni with pk g (128, 256]. The last one, c 5 23, conversely, is
composed by the biggest cities with pk g (222, 223]. In Fig. 3(d) we plot

Figure 1 | School-size distribution. (a). Italian primary school-size distribution according to the number xi of students per school i g [1, …, N] for the

year 2010. The empirical distribution is drawn in blue (each circle is a bin); the red line stands for the Lognormal fit with mean m̂~4:77 (m̂=ln 10ð Þ~2:07)

and standard deviation ŝ~0:85 (ŝ=ln 10ð Þ~0:37). On a non-logarithmic scale, exp m̂ð Þ~118 and exp ŝð Þ~2:34. N 5 17187. Statistical errors (SE) are

drawn in correspondence to each bin, according to
ffiffiffiffiffiffiffiffi
Nbin
p

. SE are bigger in the body of the distribution and tinier in the tails. Nevertheless, central

bins space from the two peaks, m1 5 1.7 and m2 5 2.3, at least 6 times the SE, equals on average to
ffiffiffiffiffiffiffi
103
p

~32. In this case the probability to have a non

bimodal shape under our distribution is 4 3 10215. (b). Italian primary school-size distribution in log-log scale. As expected, the theoretical distribution

has drawn as a perfect parabola (the red curve), y 5 ax2 1 bx 1 c, such that m̂~{b=2a and ŝ~{1=2a. Conversely, the empirical distribution does not

plot as a parabola, at least for what regards to the tails which deviate from the log-normal. The inset figure shows a functional form of the right tail of the

empirical distribution. We plot the cumulative distribution, P(X . xi) 5 exp(2axi), of school sizes in semi-logarithmic scale with characteristics

size a 5 0.0084. This in turn means that there are approximately 120 students per school.
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the average number of schools Ænæc (magenta line) and the average
school-size Æxæc (the blue line) against the comuni size pc for each
non-empty cluster c. We find that the average number of schools
increases as a power law with exponent b 5 0.88. This is consistent
with the literature2,3,26–28 that has stressed the emergence of scale-
invariant laws that characterize the city-size distribution. The aver-
age school-size increases with the population of the city reaching an
asymptotic value at xh ic^230 students per school in the large cities.
As expected, the interaction term, representing the average number
of school-aged population in comuni belonging to cluster c,
~sc~ xh ic � nh ic, behaves linearly with the comuni size except for
small comuni with pc , 103, for which the school-aged population
constitutes a smaller fraction of the total population than in large
cities.

In Fig. 4 we investigate the school-size distribution according to
the comuni features. To this end, Fig. 4(a) draws the distributions of

log10 xi conditionally on the number of schools, nk, in the comune k.
It yields 8 curves, one for each cluster h defined in Eq. 3. The first
cluster is drawn in red (1) distributing all the schools located in
comuni where only one school is provided. The orange line (#)
distributes all the schools provided in comuni with two or three
schools (i.e. h 5 2); and so on. The interesting point of Fig. 4(a) is
that only the school-size distribution of the smallest comuni (with nk

5 1) features a unimodal shape. The reason for that relies on the fact
that comuni with only one school are geographically similar: they are
the 57% of the total, with little more than 2000 inhabitants, the 81%
of which are located in mountain territories.

The relationship between school-size and altitude is investigated
in Fig. 4(b). Instead of conditioning onM, here we propose a more
consistent procedure according to which comuni are assigned to
different bins on the basis of the altitude. In such a way, we can
analyze comuni with 1,000 meters above the sea differently to those

Figure 2 | The growth rate distribution of the Italian primary schools in 2010. The growth rate gi is defined according to Eq. (2). (a). The growth rate and

school-size relationship. Colors, according to the vertical bar on the right-hand side of the graph, are the number of grades Ji provided by the school i.

Smaller schools (in blue) with Ji 5 1 are both the newest one (just created, with l 5 1) and schools that are going to close (with m 5 1). They can also be

schools that do not grow yet providing just one grade (i.e. j 5 3). (b). The mean growth rate clusters around zero across different subsets c that are

differently populated by nc schools according to the size of the circles. The color of the circles stand for the average number of grades Ji (the same gradient

color bar of Fig. 2(a) is used here). The variability within each cluster c is shown in the inset figure. Apart from schools with xi , 10, namely hospital-based

schools mostly similar to one another, the standard deviation is found to be decreasing with school-size by a rate of b < .60. (c). The probability density

function P(g 5 gi) of growth rate has been plotted underlying a Laplace PDF in the body around P(g) 5 1 and P(g) < 1021.5. Blue triangles (n) stand for

the full sample distribution, black circles (#) indicate mature schools with Ji 5 5, and red stars (*) schools with Ji 5 1. (d). The plot reports empirical tests

for the tails parts of the PDF of growth rate, the upper one in blue (#), and the lower one in black (%). The asymptotic behavior of g can be well

approximated by power laws with exponents f < 4 (the magenta dashed line).
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with 600 meters of altitude that would be gathered in the same cluster
M throwing away informative heterogeneity. It yields 5 bins: the first
bin (drawn as a blue 1 line) gathers all the comuni whose altitude is
lower than 125 meters above the see level (labeled 125 in Fig. 4(b)).
Comuni with an altitude between 125 and 250 meters above the sea
level composed the second bin (the green # line). These two dis-
tributions cluster around the second mode m2 and in the
Supplementary Information we additionally demonstrate that the
hypothesis of bimodality can be rejected for the latter distribution.
However, the greater the altitude of the comuni the greater is the shift
of the corresponding school-size distribution toward the small
schools and the greater is the contribution of these comuni to the
first mode m1. Such a shift becomes evident for comuni with an
altitude between 250 m and 500 m (red D line). Comuni located

between 500 m and 1000 m (cyan 3 line) and above 1000 m (purple
%) line) clusterize around m1.

Even the largest cities are very different from each other in terms of
their school size distribution. This heterogeneity is very likely to be
driven by geographical features. We argue this point in Fig. 4(c),
where we restrict our interest on the largest Italian cities belonging
to cluster h 5 8 (and to the first two bins in terms of altitude in
Fig. 4(b)). These cities provide a number of schools nk between 127
and 255, whose overall size distribution shows a three-peak shape
with a third peak around 300 students absent in smaller cities (the
bottom violet D line in Fig. 4(a)). The presence of the three peaks
around 100, 200 and 300 students might suggest the presence of
architectural standards of school buildings supporting these particu-
lar sizes. However, by plotting the distribution by city we show that

Figure 3 | Population and cities features. (a). The Italian city-size distribution for K 5 8092 observations. Blue circles stand for each city-bin whereas the

red solid line draws the log-normal fit of the data. Conversely to the school-size distribution depicted in Fig. 1(a), the city-size PDF features single-

peakedness, but similarly it has a power-law decay in the upper tail. (b). Zipf plot for Italian cities according to the size pk and the number of schools nk.

The black line draws the classical Zipf plot pk , r(pk)2j, with cities ranked according to population pk. Blue circles instead depict the Zipf plot pk , r(nk)2f,

with cities ranked according to the number of schools nk. Consequently, the sample reduces to M 5 6726 over N 5 8092 since more of the 15% of the cities

have no schools. (c). Each comune is assigned to 8 clusters, according to Eq. 3, and scattered against population, the magenta line (#) and the number of

cities Kh, the black line (%). The interaction term, Kh * Æpæh, the green line (n), represents the total population living in each city-cluster h. (d). According

to Eq. 4 K cities are assigned to C 5 16 clusters. In the x-axis the number of inhabitants in cluster c 5 {7, 22} is scattered against the average number of

schools (magenta line (n)) and the average school-size Æxæc (the black line (%)). The interaction term (#), representing the typical number of schooling-

aged population in cluster c,~sc~ xh ic � nh ic distributes as a power law with coefficient b < 1 for cities bigger than 103 inhabitants, and it is drawn in green.

For smaller comuni, instead, the line drops meaning that a smaller fraction of young people features them.
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all the traces of trimodality disappear. In particular flatter cities, such
as Milano and Torino, mostly contribute to second mode m2,
whereas in Genova, an Italian city built upon mountains that steeply
slope towards the sea, the school-size distribution is unimodal con-
tributing mostly to the first mode m1.

Another way to look at the effect of geography on the comunal
school-size is to compute the fraction of large schools within each
comune k:

Pk xiw�m V i [ kjð Þ: nk xiw�mð Þ
nk

V i [ k, ð5Þ

where nk xiw�mð Þ stands for the number of schools that, in each
comune k, are larger than the minimum �m of the school-size distri-
bution shown in Fig. 1(a). It can also be interpreted as the contri-
bution rate of a comune k to the second mode m2. The upper panel of
Fig. 5(a) diagrammatically explains how Pk(?) is computed.

We firstly study the relationship between Pk(?) and population,
then looking at the spatial distribution across the Italy. In Fig. 5(a),
we clusterize comuni according to Eq. 3, and for each bin h we
compute the average Pk xiw�m V i [ kjð Þh ih and population Æpkæh.
Interestingly, the plot shows that Pk(?) does not increase monoton-
ically with population, demonstrating the existence of two city-pat-
terns. More precisely, cities with less than 104 inhabitants follow a
pattern according to which the fraction of big schools, with xiw�m,
increases, on average, with population at a rate of b1 < .22; in cities
with more than 105 we find the effect of population to be smaller,
corresponding to b2 < .15. For the cities with population between 104

and 105, the fraction of large schools does not increase with size
suggesting that exogenous shocks such as altitude, rugged terrain
and age might shift a city in this transition zone to either mode m1

or mode m2.
Overall, the distribution of Pk xiw�m V i [ kjð Þ is strongly corre-

lated with the geographical features of the comuni territory. The
map in Fig. 5(b) clarifies this point; all the mountain territories,
Apennines that represent the spine of the peninsula and the Alps
on the northern side, turns to be comuni with small schools, since
the share of small schools in mountain comuni is equal to
P xiƒ�m k [Mjð Þ~0:72. As soon as the probability to contribute
to m2 increases the colors get warmer; but this is very unlikely to
be in the mountain territories, because less than 30% of mountain
comuni contribute to the antimode. Some regional patterns are
also shown in the insets. The first upper panel depicts the area
around Milan, which is surrounded by warm colors that mostly
dye the Pianura Padana around. On the south side, Appennines
approach and colors get blue with a lot of comuni with no schools
(depicted in white). This pattern is more evident in the lower
panel, which maps the region of Apulia, flat and mostly red, and
the Basilicata on the left side, mountainous and mostly blue
colored.

Countryside versus dense regions. In this last section, we bring
more evidence on the effect of geography and comuni organization
on the school-size by restricting our attention at two Italian regions:
Abruzzo and Tuscany. But same results stand by looking at regions
with the same geographical features. The two regions have very
peculiar and representative geographical and administrative
characteristics. Abruzzo is a mostly mountain region with a little
flat seaside; it has four main head towns divided from each other
by mountains. Conversely, Tuscany has many flat zones in the center

Figure 4 | School-size distribution conditional on comuni features.
(a). School-size distribution for different city-samples clustered according

to the number of schools, i.e. to Eq. 3. Only comuni with nk 5 1 show a

single peak school-size distribution, clustered around m1 (the 1-red line on

the top). They have an average population of 2000 inhabitants and the 81%

are located in mountain territories. (b). School-size distribution for

different city-samples clustered according to the altitude. The altitude of

the comune shift the school-size distribution (shift location effect) as higher

comuni are generally smaller schools. (c). School-size distribution in the six

biggest Italian cities. With the exception of Rome, the hypothesis of

unimodality may not be rejected in none of the biggest cities. In particular,

flatter cities, such as Milano and Torino, mostly contribute to second mode

m2, whereas in Genova, Italian city built upon mountains that steeply

ended on the sea, all the school-size distribution stands on the left side.
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and the mountain areas shape the region boundaries. Remarkably, it
has a very high densely populated zone along the metropolitan area
composed by Florence, Pisa and Livorno.

These two regions also differ in terms of administrative organiza-
tions, Abruzzo favoring the establishment of comuni with a smaller
size due to the presence of mountains. Figure 6(a) shows the comuni
population distributions in Tuscany and Abruzzo. We clusterize
comuni using the algorithm in Eq. 4. As Fig. 6(a) makes clear, comuni
distribute approximately as a log-normal PDF in both regions, i.e. as
a parabola in a log-log scale (the green-# line stands for Abruzzo
PDF, the magenta-D for Tuscany). Nevertheless, Tuscany has bigger
cities. Figure 6(a) also shows the average number of schools as func-
tion of the population. The fact that ÆnKæ is less than one for small
comuni reflects the fact that many of these comuni do not provide
schools. Abruzzo has a larger number of small comuni that do not
provide schools. The first bin collects comuni with a bit more than
100 inhabitants. They are 7 in Abruzzo (none in Tuscany), none of
them providing any school services. The second bin accumulates 10
comuni in Abruzzo with 300 inhabitants (none in Tuscany), of which
only one has a school. Comuni with about 600 inhabitants are 40 in
Abruzzo and only 7 in Tuscany. Only 30% of them have one school in
Abruzzo while 80% of them have at least one school in Tuscany.
Overall, there are 53 comuni in Abruzzo without schools; only 3 in
Tuscany.

Such differences reflects on the school-size distribution, depicted
in Fig. 6(b). Although primary schools distribute in both regions in
terms of size with two peaks, both Abruzzo m1 and m2 are shifted
on the left with respect to the Tuscany ones. The average school-size
is smaller in Abruzzo (m̂ABR~4:56 m̂ABR=ln 10ð Þ~1:98ð Þ versus
m̂TOS~4:91 m̂TOS=ln 10ð Þ~2:13ð Þ), and, remarkably, the lower tail
is fatter in the former region. The cutoff for splitting the mixed

distributions amounts to 128 in Abruzzo and 151 in Tuscany, and
31% of the schools are clustered in the second peak in the former
region; P xiw�mTOS V i [ TOSjð Þ~0:38 in the latter.

In Fig. 6(c) we show, following the same clustering technique used
in Fig. 5(a), that in both regions the fraction of big schools within
comune k, Pk xiw�m V i [ kjð Þ, increases monotonically with respect to
the number of inhabitants for Æpkæh , 20000. In this interval, a
comparison with figures for entire Italy, plotted in Fig. 5(a), reveals
that both regions follow the same national pattern. Yet, mountain
regions, such as Abruzzo, have a significantly smaller concentration
of big schools. In particular in Abruzzo, only about 1/10 of comuni
with just one school, with an average population of roughly 2000,
have a school with more than 125 students. In Tuscany, they are the
25%, about the same as national ratio. In larger comuni, with an
average population of 5000 and two schools provided (the second
bin), the probability of having big schools raises to 0.2 in Abruzzo,
still smaller than Tuscany where Pk xiw�mjVi[kð Þh ih~2~0:3.

Small schools are mainly located in the countryside, and for that
reason they cluster together, i.e. it is more likely to find a small school
near a small one. In Abruzzo this clustering effect is stronger than in
Tuscany. We investigate this point in Fig. 6(d), where we compute,
and plot on the x-axis, the cumulative probability P(xi # x*), as
function of x*, and the correspondent conditional probability
P xtƒx�jxiƒx�
	 


, on the y-axis, which is the fraction of schools with
the size smaller than x* among the schools closest to a school of size
x*. This quantity is equal to 74% and 65% for x�:�mreg in Abruzzo
and Tuscany respectively, meaning that there is a greater probability
that a small school matches with another of the same kind in the
former region. If the conditional probability were equal to the
cumulative, as indicated by the black line in Fig. 6(d), the sizes of

Figure 5 | Fraction of large schools in comune k. (a). The panel above shows the process according to which each comune, with population pk defined by

the size of the the black circles, is assigned to either patterns on the basis of the size of the schools provided in there (the small blue circles). The panel below

shows that more populated clusters of cities are, on average, more likely to have schools sized around m2. The relationship, depicted in blue, is

however non monotonic. In correspondence of each bin h, the standard deviations has been computed, underlining the outstanding variability in very

small cities (the green line). (b). Spatial distribution of cities according to Pk xkw�mjVi[kð Þ. Warmer territories stand for cities more likely of having schools

distributed around m2. The two figure inset underline the region around Milan (in the North), on the top, and the regions of Basilicata (mostly mountain,

at the left side) and of Apulia (mostly flat, at the right side), on the bottom. Maps generated with Matlab.
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neighboring schools would be independent. This is not the case in
either of the two regions. The probability that a small school has a
smaller nearest neighbor is larger than the probability that any school
is smaller than a given one. Indeed, the two curves (green for Abruzzo
and magenta for Tuscany) are significantly above the 45 degree line
for P(xi , x*) , 0.6 in Tuscany and for P(xi , x*) , 0.7 in Abruzzo.
These probability values roughly correspond to the probabilities
P xiv�mð Þ in respectively Tuscany and Abruzzo, indicating that in
both regions small schools are likely to belong to the small moun-
tainous comuni, whose nearest neighbors are of the same class.

We further study the attraction intensity among small schools by
disentangling the effect between the countryside and dense zones. To
this end, we analyze the GPS location of the schools in the two
regions and, for each school i, we compute the number of schools
ni

m belonging within a circle of radius rm centered at each school j. We
exclude from ni

m all the schools which do not belong to Tuscany or
Abruzzo, respectively. To eliminate the effect of region’s boundaries,

we also compute areas Dj
m as the areas of the intersections of these

circles with a given region (Abruzzo or Tuscany). Thus Di
mƒp ri

m

	 
2
,

because these areas do not include the seaside and administrative
territories of other regions. The difference between two subsequent
circles yields the area of the annulus Ai

m~Di
m{Di

m{1. The density of
schools in the area Ai

m is then defined as:

ri
m~

ni
m{ni

m{1

Ai
m

, ð6Þ

and the average density of schools as function of a distance to a
randomly selected school is

rmh ii~
P

N ni
i{
P

N ni
m{1P

N Ai
m

: ð7Þ

In Fig. 7(a) red lines represent the average school-density around all
the schools in Tuscany and Abruzzo, which are 472 in the former and

Figure 6 | Regional analysis. (a). The figure distributes the city-size in Abruzzo (#-green) and Tuscany (n-magenta) by plotting the number of comuni,

Kc , against the number of inhabitants, pc. Also shown is the average number of schools in a comune in Abruzzo and Tuscany, belonging to a bin c defined

by Eq. 4, by the circled- and triangled-connected lines respectively. (b). School-size distribution in Abruzzo (#-green) and Tuscany (n-magenta).

Both PDFs are approximately lognormal and bimodal with splitting point equal to 128 and 151 students per school respectively. (c). Average fraction of

big schools in each comuni bin, defined by Eq. 3, in Abruzzo (#-green) and Tuscany n-magenta). The plot shows that more populated comuni are, on

average, more likely to have schools sized around m2, in both regions. Yet, in mountain regions, such as Abruzzo, smaller comuni have also smaller schools

on average. (d). The conditional probability is plotted in the y-axis, for an arbitrary school size x*, as function of x* against the cumulative probability

P(xi # x*). The conditional probability is equal to the cumulative in correspondence of the black line. Along these points, there is no attraction between

schools of the same size. This is not the case in both the two regions.
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1037 in the latter region. Green lines describe the average school
density around a small school with xiƒ�m, named S1, whereas the
blue lines describe the density around large schools, S2 with xiw�m.
64% of the schools in Abruzzo belong to the S1 group, 53% in
Tuscany. Fig. 7(a) collects evidence about the fact that small schools
S1 are located in low school density zones and, accordingly, have a
smaller probability to be surrounded by competitor schools than
large schools (S2) located in densely populated areas. In both regions,
in fact, the green line goes under the blue one, for at least first 50 km.
In particular, within this distance, in Abruzzo the density stays
almost constant at approximately 0.053 meaning that 1 school is
provided every 20 km2. In Tuscany, this figure goes up to 0.07,
because of a generally higher population density, but yet small.

The correlation coefficients between the school size and the dis-
tance to it nearest neighbor are negative in both regions, but the
magnitude is quite different, equal to 0.34 in Abruzzo, that is 1.7
times greater than in Tuscany (0.20). To reduce the noise, we proceed
by clusterizing schools according to their size. Fig. 7(b) confirms this
pattern by showing that small schools have on average more distant
nearest schools. We look at the size of each school in both regions,
and we define the geodesic euclidean distance between the school i
and its nearest neighboring school (which we denote by subscript t)
as d xi,xt

	 

. The binning algorithm used is to base 2:

l~ Vi[ 1, . . . ,N½ � : 2l{1
ƒxiv2l

� �
: ð8Þ

This clusterization yields 8 bins, with different average sizes plotted
on the x-axis of Fig. 7(b). On the y-axis, we plot the average distance
between the school i, that belongs to the bin l, and its nearest, i.e.

d xi,xt
	 
� �

l
. Each school-bin l is depicted by green circles for Abruzzo

and magenta triangles for Tuscany. The average distance between the
closest schools decreases with respect to the average school size Æxiæl

for Æxiæl . 32 in both regions meaning that, in general, small schools
are sparser than large schools that are more likely to be located in very
dense zones, like cities. The non-monotonic behavior of this quantity
for Æxiæl , 32 in Tuscany can be explained by the fact that such small
schools in Tuscany are usually hospital schools which are located in

densely populated areas. Whereas the schools provided in small
islands, at least 20 km far from the coast, have been removed in order
to eliminate any artificial bias from the spatial analysis. The three first
magenta bins are all below the green ones, confirming, in accordance
with the geographical features of the two regions, that in Abruzzo
small schools are sparser and more likely to be located in the country-
side where the school density is low (see Fig. 7(a)). Moreover, small
schools on average have a distance to the nearest neighbor of 4–5 km
which is the average distance between a small comune and a more
school-dense one (see the Methods section).

The two regions then outline very different patterns of the school
system in the countryside. In Abruzzo small schools are uniformly
distributed across small comuni, as a result of a policy favoring the
disaggregation of the comuni and school organization, due to a tight
geographical constraint. In Tuscany, instead, a different system has
been implemented, according to geographic features and a higher
population density, where small comuni are larger and do not neces-
sarily have small schools, especially if they stand in very populated
zones.

Discussion
We have studied the main features of the size distribution of the
Italian primary schools, including the sources of the bimodality,
and we have investigated its relation to the characteristics of the
Italian cities. The fat left tail of the distribution is the consequences
of political decisions to provide small schools in small (mostly
countryside) comuni, instead of increasing the efficiency of public
transportations. This is most probably caused by the topographical
features of the hilly terrain making transportation of students dan-
gerous and costly. The evidence of this conclusions is that hilly cities
like Palermo, Napoli, an, above all, Genoa, with steep mountains that
end up into the sea, have higher fraction of small schools than mainly
flat cities like Torino and Milano.

The analysis of schools growth rates highlights that the schools
dynamics follows the Gibrat law, and both the growth rate distri-
bution and the size distribution are consistent with a Bose-Einstein

Figure 7 | Regional spatial analysis. (a). Ærmæi has been plotted, based on Eq. 6, and 7, for the region of Abruzzo (%) and Tuscany (n). The red line draws

the trajectory averaging among all the schools in Italy. Green and blue lines stand for small schools, i.e. xiƒ�m, called S1, and big schools, i.e. xiw�m,

called S2, respectively. (b). The average distance, in km, between the closest schools, d xi,xt
	 
� �

l
, is plotted in Abruzzo (#-green) and Tuscany

(n-magenta) with respect to the average size, Æxiæl. Each cluster l has been obtained by aggregating schools with near size according to Eq. 8. In Tuscany,

the schools provided in small islands, at least 20 km far from the coast, have been removed in order to eliminate any artificial bias from the spatial analysis,

whereas the 18% of the schools, with no address provided in the MIUR dataset, have been geocoded in Tuscany according to the GPS localization of the

city hall of the comune in which they stand. The average distance between the closest schools decreases in both regions with respect to the average size

meaning that, in general, small schools are sparser than large schools that are more likely to be located in very dense zones, like cities.
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process. Alternatively, the exponential decay of the upper tail can be
explained by a constraint by the size of the building or a traveling
distance and transportation cost.

Despite our results are conducted using data on Italian primary
schools, they predict that schooling organization would be different
in another country with different geographical features. Flat territory
would lead to open schools in the main villages allowing the children
residing in the smallest ones to travel daily. This result is additionally
supported by the fact that no territorial constraint has been imposed
to the schooling choice. Despite parents can enroll children in the
most preferred school, primary students generally do not move
across comuni to attend a school. Accordingly, we find that school
density and school-size are prevalently driven by the population
density and then by the geographical features of the territory, as a
result of a random process in the school choice made by the parents.
This goes in the opposite direction with what has been found in other
countries such as USA where school choices influence residential
preferences of parents and drive the real estate prices in townships
depending on the quality of their schools29.

The availability of new longitudinal school data will be relevant to a
more in-depth analysis and further discussions. Moreover, the avail-
ability of data for other similar countries would favor comparison and
would be useful to assert our theory. We believe that this study, and
future research, can lead to a higher level of understanding of these
phenomena and can be useful for a more effective policy making.

Methods
In this section we propose a novel algorithm for the analysis of spatial distribution of
primary schools in entire Italy. This algorithm is needed if the exact coordinates of
individual schools are not available, but instead, the centers and the territories of all
the comuni are known. For each comune k, we define a gravity center gk of its territory
corresponding to the GPS location of its city hall, and tk as the area of the comune
administration. In Italy the city hall is located in the center of the densely populated
part of the administrative division, in order to be easily reachable by the majority of
inhabitants. We develop a novel spatial-geographical approach consisting of a
sequence of geographic regions bounded by two concentric circles, that we exem-
plified in Fig. 8(a) for a comune in Abruzzo. First we define a set Zk

m of comuni whose
city halls are within a circle of radius rk

m centered at the city hall of comune k.
Formally,

Zk
m~ V j[ 1, . . . K½ � : d gk,gið Þƒrk

m

� �
: ð9Þ

Next we compute the number of schools provided by the comuni which are members
of set Zk

m that is defined by

nk
m~

X
j[Zk

m

nj ð10Þ

and their area

Dk
m~

X
j[Zk

m

tj, ð11Þ

where tj is the area of comuni j. Next we compute the area associated with all the
comuni in the m-th concentric annulus surrounding comune k as the difference
between the area associated with the larger circle m of radius rk

m and the area assoc-
iated with the smaller circle m 2 1 of radius rk

m{1, i.e. Ak
m~Dk

m{Dk
m{1. In Fig. 8(a),

each comune territory is colored with different colors according to the annulus in
which they belong.

The density of schools in the area Ak
m is then defined as:

rk
m~

nk
m{nk

m{1

Ak
m

ð12Þ

Then we compute the average density of schools around any school in Italy as:

rmh ik~
P

K nk
m{

P
K nk

m{1P
K Ak

m
ð13Þ

In Fig. 8(b), we plot Ærmæk averaged over all the K 5 8092 Italian comuni as a function
of the radius rm that goes up to 103 Km across the entire Italy. The red line represents
the average school-density among all the cities in Italy. On average, Italian comuni
stand within very dense zones providing almost 1 school per 10 km2. The dense zones
generally last for 10 km and, after that, a smoothed depletion zone is experienced.
However, the average distance between a comune k and a very large city with many
schools is about 100 km, accordingly we see a second peak in the average school
density at distance 100 km.

The full sample analysis basically averages heterogeneous characteristics that fea-
ture different types of comuni. The interaction among schools can be better under-
stood by splitting the sample according to Pk xiw�mjVi[kð Þ. In Fig. 8(b), comuni with
Pk xiw�mjVi[kð Þƒ1=2, i.e. with predominantly small schools, are named M1. The
others, with predominantly big schools, are called M2.

. M2-comuni, the blue line, are (on average) more likely to be surrounded by
school-dense comumi. These comuni are located in densely populated areas
(depicted in red in Fig. 5(b)) where the school density is large (1.3 schools stand
on average within 10 km2). As far as the distance increases mountainous areas
(and hence M1-comuni) are encountered and, as a result, the density of schools is
found to dramatically decrease.

. The green line describes instead comuni labeled M1 where a smaller school
density is found. Within 10 km, in fact, almost one school per 20 km2 is encoun-
tered on average, about the half of what we find for the M2-comuni. This is

Figure 8 | Spatial analysis. (a). Graphical example for a small comune in Abruzzo of the algorithm used in Fig. 8(b), based on the Eq. 11, 12, and 13.

Different comuni are colored according to the annulus in which they belong. (b). Ærmæk has been plotted for a radius rk
m of length 103 across Italy. The red

line draws the trajectory averaging among all the cities in Italy. Green and blue lines stand for cities with probability Pk xiw�mjVi[kð Þƒ1=2, labeled M1, and

Pk xiw�mjVi[kð Þw1=2, labeled M2, respectively. Maps generated with Matlab.
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because M1-comuni mainly stand along the countryside (those depicted in blue
in Fig. 5(b)) where school density slowly increases with distance and reach a
maximum at approximately 40 km, which can be interpreted as a typical distance
to a densely populated area in a neighboring mountain valley. After this distance
the density of schools around M1 and M2 comuni behave approximately in the
same way.
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